Donnerstag, 28. April 2016

Swissbib data goes linked 2: Verlinkung und Anreicherung / Interconnexion et enrichissement

Deutsche Version Version française

Serie "Swissbib data goes linked"
Teil 1 | Teil 2 | Teil 3 | Teil 4

In diesem Beitrag aus der Artikelserie zum SUK P-2-Projekt linked.swissbib.ch möchten wir die eingesetzten Techniken zu Verlinkung und Anreicherung des swissbib-Datensatzes vorstellen. Mit diesem Arbeitspaket beschäftigt sich GESIS – Leibniz-Institut für Sozialwissenschaften in Köln. Die Arbeitsgruppe, bestehend aus Felix Bensmann, Philipp Mayr, Benjamin Zapilko und Priyanka Dank, erprobt und implementiert Methoden, um die in Swissbib vorhandenen Metadaten mit bekannten quelloffenen Datenkorpora wie z.B. der Virtual International Authority File (VIAF) oder DBpedia zu verknüpfen. Die besondere Herausforderung besteht dabei im Umgang mit den sehr großen Datenmengen, allein der Bestand von Swissbib liegt bereits mit ca. 39 GB vor. Diese entfallen auf ca. 21 Mio. Dokumente (i.S.v. Publikationen), ca. 5,8 Mio. Personen und weitere Typen in RDF/XML-Repräsentation.

Überblick


Als Ausgangspunkt für unsere Arbeiten verwenden wir ausschließlich die Personendaten aus Swissbib. Diese werden im Rahmen der Metadatentransformation aus dem klassischen Swissbib mit den übrigen Daten exportiert, in das RDF/XML-Format überführt und für die Anreicherung weiterverarbeitet.
Das Resource Description Framework(RDF) eignet sich auf Grund seiner Natur besonders für die Verlinkung. Als grundlegender Baustein des Semantic Web, zu dem auch die Linked Open Data (LOD) gehören, liegen die Korpora der Linked Open Data Cloud und eben auch DBpedia und VIAF in diesem Datenmodell vor. In der Folge können wir uns an bestehenden Arbeiten orientieren. Die Eingrenzung auf Personendaten ermöglicht uns außerdem, unsere Methoden an einem abgeschlossenen Anwendungsfall zu erproben. Die erprobten Methoden sollen später auf weitere RDF-Konzepte übertragbar sein.
Nachdem die Verlinkung stattgefunden hat und die Links zwischen den Personen der beteiligten Korpora vorliegen, reichern wir die Personen in Swissbib mit den Zusatzinformationen der Personen aus den externen Korpora an. Abschließend werden die Personendaten in den übergreifenden Verarbeitungsprozess zurückgeleitet.
Bei der ersten Inbetriebnahme ist der Vorgang einmalig für alle Personendaten zu durchlaufen, danach sollen täglich nur noch die Personendatensätze verarbeitet werden, die zwischen den Durchläufen verändert wurden.
Im Weiteren wollen wir den Verarbeitungsprozess kurz vorstellen.

Vorprozessierung


Das Ziel im ersten Schritt ist es, die Daten für die Verlinkung vorzubereiten. Bei der Verlinkung werden alle fraglichen Ressourcen des internen Korpusses mit allen fraglichen Ressourcen eines externen Korpus anhand verschiedener Kriterien verglichen. Wenn alle Kriterien erfüllt sind, wird angenommen, dass die beiden Vergleichspartner identisch sind und es wird ein Link ausgegeben. Bei zwei Korpora mit n und m Personen sind n*m Vergleiche notwendig. Etablierte Werkzeuge wie beispielsweise das Silk-Frameworkder Universität Mannheim oder LIMESder AKSW Research Group der Universität Leipzig, setzen diese Funktionen bereits um. Darüber hinaus bieten sie weit entwickelte Methoden um den Vergleichsaufwand zu minimieren. Bei einer Vollverlinkung weisen beide Werkzeuge einen enormen Memory footprint auf, was dazu führt, dass der Arbeitsspeicher schneller befüllt wird, als der Garbage-Collector Speicherplatz freigeben kann, in der Folge werden die Threads der Programme einer nach dem anderen von der JVM beendet. Eine direkte Verlinkung der Daten ist somit nicht möglich. Um dem entgegenzuwirken, teilen wir die Daten in kleinere Vergleichsmengen auf. Hierfür verwenden wir ein selbstentwickeltes prototypisches Kommandozeilenwerkzeug mit dem Namen ReshapeRDF.
Zunächst werden die Daten der Korpora jeweils in N-Tripleskonvertiert und in je einer Datei zusammengefasst. Bei diesem Vorgang müssen keine größeren Datenmengen im Arbeitsspeicher gehalten werden. Im nächsten Schritt werden die N-Triples alphabetisch sortiert (Unicode-Order), sodass die Statements einer Ressource direkt aufeinander folgen (s. Abb. 1).

Abb. 1: Sortierte N-Triples

Die sortierten N-Triples stellen das Ausgangsformat für die nachfolgenden Schritte dar. Darin werden die zu verlinkenden Ressourcen, Personen, extrahiert und Statements, welche für die Verlinkung nicht benötigt werden, werden entfernt. Anschließend werden die Personen auf mehrere Dateien aufgeteilt. Hierzu wenden wir ein einfaches Blocking an. Im Gegensatz zu einer einfachen Aufteilung müssen hier später nur noch die einander entsprechenden Blöcke verlinkt werden (s. Abb. 2). Als Kriterium für die Blockbildung wird jeweils der Anfangsbuchstabe des Nachnamens verwendet.

Abb.2: Verlinkung mit einfacher Aufteilung (l) im Vergleich zu Blocking (r)

Unser Ansatz mit sortierten N-Triples eignet sich vor allem für regelmäßige Datenstrukturen, wie wir sie bei größeren Datenmengen erwarten. Die Vorprozessierung dauert auf unserem System (192 GB RAM, 32x2,0 GHZ Multicore-Prozessor, HDD-Festplatte) etwa 4,5 Stunden für Swissbib, 6,5 Stunden für DBPedia und 17 Stunden für VIAF. Die Zeiten schwanken je nach Rechnerauslastung stark.

Verlinkung


Es werden die Personen zweier Blöcke kreuzweise mit einander verglichen. Eine Vergleichsvorschrift gibt an, welche Properties der Personen auf welche Weise miteinander verglichen werden sollen. Diese muss vorab von einem Anwender definiert werden. Abb. 3 zeigt ein Beispiel für den Vergleich zweier Personen.

Abb. 3: Vergleichsvorschrift für die Verlinkung

Bei LIMES und Silk kann die Vorschrift mit Hilfe einer domänenspezifischen Sprache angegeben werden. Beispielsweise können Properties mit unterschiedlichen Namen einander zugeordnet werden, oder es können Ähnlichkeitsmetriken mit Schwellwerten für den Vergleich angegeben werden. Je mehr Properties wir vergleichen, desto höher ist die Wahrscheinlichkeit korrekte Links zu finden. Im vorliegenden Fall geschieht der Vergleich anhand der Werte der Properties für die Vornamen, Nachnamen und Geburtsdaten. Wir setzen LIMES ein, da dieses bei uns das bessere Laufzeitverhalten zeigt. Wird Gleichheit erkannt, dann wird ein owl:sameAs-Statement ausgegeben, das den Link repräsentiert.
Aus Gründen der Performanz generieren wir für jeden Vergleich zweier Blöcke eine Konfigurationsdatei und starten mehrere Vergleiche simultan. Auf unserem System dauert die Verlinkung mit VIAF etwa zwei Stunden und die mit DBpedia etwa eine halbe Stunde.

Anreicherung und Verifikation


Mit Hilfe der gefundenen Links extrahieren wir mit ReshapeRDF die zugehörigen Personen aus dem externen Korpus. Dies machen wir für jeden externen Korpus gegen den wir verlinken. Diese externen Daten werden mit den Personendaten des internen Korpus zusammengeführt. Abschließend werden alle Daten sortiert, Duplikate werden entfernt und die Daten werden in den übergreifenden Verarbeitungsprozess zurückgeführt. Die Anreicherung nimmt ungefähr zwei Stunden in Anspruch.
Die Links können stichprobenartig intellektuell überprüft werden. Dazu haben wir eine Benutzeranwendung entwickelt, die es Anwendern erlaubt, die Ressourcen, welche durch einen Link verknüpft sind, zu inspizieren. Die Anwendung mit Namen Linkinspect greift dazu via SPARQL auf Triplestores zu und stellt die Ressourcen einander gegenüber. Der Nutzer hat dabei die Möglichkeit mittels Browsing in den Triplestores zusätzliche Informationen zu einer Ressource anzuzeigen.

Fazit


Dieser Artikel beschreibt die Vorprozessierung, Verlinkung und Anreicherung von Personendaten in Swissbib mit Informationen aus externen Korpora der LOD wie DBpedia und VIAF. Hierbei spielen die großen Datenmengen und die damit verbundenen langen Prozessierungszeiten eine besondere Rolle. Wir zeigen einen Ansatz, wie mit Hilfe eines speziellen Datenformats und verschiedenen Werkzeugen, diese Zeiten optimiert werden können. Im Vergleich zu einem naiven Ansatz konnten wir uns bei der reinen Verlinkung um den Faktor 20 verbessern.
Wir gehen davon aus, dass die einzelnen Vorprozessierungen, Verlinkungsprozesse und Anreicherungen, weitestgehend parallel zueinander ausgeführt werden können. Weitere Optimierungsmöglichkeiten sehen wir darin, den Grad der Flexibilität reduzieren und in der Vorprozessierung ein Pipelining-Konzept, wie in Metafacture, einsetzen. Dies ist aber nur teilweise möglich.
Bei der Bearbeitung sind wir auf zwei wesentliche Hürden gestoßen: Zum einen können wir im vorgegebenen Zeitraum keine Personendisambiguierung vornehmen, sodass in der Ausgabe Personen mehrfach aufgeführt werden, zum anderen sind teils nicht ausreichend Informationen vorhanden um hochwertige Links zu erstellen. Hier beschränken wir uns auf Personen über die mehr Informationen vorliegen. Darüber hinaus arbeiten wir an Verfahren die Information verbundener Dokumente miteinbeziehen.

Keine Kommentare:

Kommentar veröffentlichen